Semiconductor Nanowires: current X-ray characterization and forthcoming challenges

J. Eymery (a), V. Favre-Nicolin (a,b), F. Mastropietro (a,c), F. Rieutord (a), L. Fröberg (d), T. Mårtensson (d), M. Borg (d), L. Samuelson (d), L.-E. Wernersson (d), S. Baudot (a,e), F. Andrieu (e)

(a) CEA Grenoble, CEA-CNRS-UJF, “Nanophysique and Semiconductor Group”, INAC, SP2M, 17 rues des Martyrs, France.
(b) Université Joseph Fourier, Grenoble, France. (c) ESRF, Grenoble, France. (d) Lund University, Physics Department, Sweden.
(e) CEA-Leti, Minatec Campus, 17 rues des Martyrs, France.

Overview

- Nanowires: new materials for photonics, photovoltaics & electronics
 - New heterostructures
 - Integration in devices

- Materials Challenge illustrated by:
 - InAs/InP & InP/InAs/InSb NWs
 - Strained-Si stripes, GaN

X-ray Techniques Challenge:
- Grazing Incidence, anomalous scattering,
- μ-Laue, coherent diffraction
For assemblies and single objects

Future studies
Further information needed: about strain, doping control, surface passivation…
Why to study nanowires?

Applications

Light emitters

Light Conversion

Heterostructures & dopings

Growth studies

Photonics, photovoltaics

& electronics

Band-gap engineering

Strain Relaxation

Composition Control

Homogeneity

Sensors

Micro-electronics

Batteries

Reliability

• Assembly: GlXRD

InAs/InP nanowires (Lund U.)

- Superlattice: 10 nm InP / 20 nm InAs

• Several contributions analyzed by changing the incidence
• Defect-free stacking and faults can be measured

BM32 @ ESRF

E-MRS, Nice
May 9th, 2011
J. Eymery

Strain and Shape of Epitaxial InAs/InP Nanowire Superlattice Measured by Grazing Incidence X-ray Techniques

Joff Eymery,* François Riedert, Vincent Favre-Nicolin, Odile Robach, Yann-Michel Niquet, Linus Fritberg, Thomas Mattisson, and Lars Samuelson
• Strain: in-plane reflections

(200) and (300) reflections correspond to planes \perp to the surface

\[\varepsilon_{yy} \]

\[\text{Lattice parameter} \]

\[\text{Intrinsic broadening due to the heterostructure} \]

• Quantification of the \textbf{epitaxial growth} (mosaictiy, bending…)

• Strain & relaxations in the NWs

In agreement with atomistic calculations

Mosaictiy:

NW: 0.5°
TW: 0.02°
S: 0.001°
• **Core-shell system:** InAs NW integration

![Diagram of core-shell system and transistors](image)

- Transistors
- Capacitors
- RF devices

Bibliography

J. Eymery,¹, a¹ V. Favre-Nicolin,¹ L. Fröberg,² and L. Samuelson²

\[\varepsilon_{\perp} \]

- **In-plane diffraction**
 - (-2 0 0) reflection

- **Out-of-plane diffraction** (Crystal Truncation Rods)

Small in-plane dilatation:
- **Strain gradient (broadening)**
- **In agreement** with semi-empirical potential and continuum elasticity calculations

Quite large out-of-plane contraction:
- **Internal reference**
- **Significant strain after Cr-deposition**

Strain tensor: InAs in core/shell NW devices

J. Eymery, V. Favre-Nicolin, L. Fröberg, and L. Samuelson

APPLIED PHYSICS LETTERS 94, 131911 (2009)
• **Shape & size distribution:** Grazing Incidence Small Angle Scattering (GISAXS)

- Detector

BM32 @ ESRF

- **Hexagonal symmetry**

- **Size fluctuation** ($\Delta R/R < 8\%$)

Strain and Shape of Epitaxial InAs/InP Nanowire Superlattice Measured by Grazing Incidence X-ray Techniques

Joel Eymery, François Rieutord, Vincent Favre-Nicolin, Odder Robach, Yann-Michel Niguet, Linus Friberg, Thomas Mårtensson, and Lars Samuelson
• **Shape & core/shell thickness**: in NW devices

(Lund U. growth)

- Evolution of the Hexagonal shape
- Smoothening with HfO$_2$ and Cr deposition.
- Core/shell thicknesses

J. Eymery,1,a V. Favre-Nicolin,1 L. Fröberg,2 and L. Samuelson2

APPLIED PHYSICS LETTERS **94**, 131911 (2009)
• Assembly Study: Anomalous measurements

InSb/InP interface

Microscopy measurements

\[I \propto \sum_j f(\vec{Q}, E_j) e^{i\vec{Q} \cdot \vec{r}_j} \]

\[f(\vec{Q}, E) \approx f_0(\vec{Q}) + \{f_1(E) + if_2(E)\} \]

• Anomalous measurement: Sb absorption edge (around 30.5 keV)

Almost pure InSb

Energy (eV)

(201)_{\text{InSb}} : weak peak
Very sensitive to composition

(101)_{\text{InSb}} : strong peak
Not very sensitive to composition
• Study of QDs inserted in NWs

InP reciprocal lattice units (rlu)

InP Wurtzite (NW)

InP Substrate Zinc-Blende (S)

InP Zinc-Blende Twinned (TW)

InSb Zinc-Blende (NW)

InSb Wurtzite Twinned (TW)

InAs Wurtzite (NW)

Anomalous measurements on InAs peaks

BM32 @ ESRF

E-MRS, Nice
May 9th, 2011
J. Eymery
Single Object Studies: Coherent Diffraction Imaging (CDI)

Monochromatic wavelength

Beam size: 200x500 nm², $10^9 - 10^{11}$ ph/s, Trans. coh. length: ~20 µm

Phase retrieval methods

Advantages
- Spatial resolution
- Increase of diffraction pattern contrast
- Direct recovery of shape and strain

ID01 @ ESRF

E-MRS, Nice
May 9th, 2011
J. Eymery

Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel Zone Plate.
• Insight of the information gained from CDI

- **Size and shape**: equiv. to TEM, SEM informations, but useful for buried structures

- **Analysis of stacking faults**
 - nature (from Bragg peak selection)
 - statistical distribution

Coherent diffraction imaging of single 95 nm nanowires.
Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging
• Single Object Study: strain mapping
Active materials in transistors (PDSOI)

Single sSi etched wire (W=200 nm)

Perfect sSi structure + small bending (∼1 %)

Experiment

Calculation

Displacement field

• Very sensitive technique

ID01 @ ESRF

Elastic relaxation in patterned and implanted strained Silicon On insulator.

BM02 & BM32 @ ESRF

PhD F. Mastropietro +
• Single Object Study: Local strain mapping

InSb/InP interface

Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging
• Single Object Study: Local strain mapping

Very sensitive method: 1 ML InAs in GaAs (MBE sample)

Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging
Single Object Studies: Micro-Laue Diffraction (µ-L)

Polychromatic wavelength
Beam size: 0.5x0.5 µm²
1 s measurement !!

Top-view

GaN wires

Analysis of single Wires + mapping

Epitaxial relationships...
• Single Object Studies: Micro-Laue Diffraction (μ-L)
Polychromatic wavelength Beam size: 0.5x0.5 μm² 1 s measurement !!

Strange structures…

• Micro-Laue on the branches of tripods.
• Orientation matrix and structure by Laue indexing

Fluo mapping
• Single Object Studies: Micro-Laue Diffraction (µ-L)

Polychromatic wavelength Beam size: 0.5x0.5 µm² 1 s measurement !!

High resolution…

Zoom: Screw dislocation
Inside one GaN wire

High resolution measurement of a peak

Simulation
Conclusions

- Complementary techniques
 - Grazing Incidence
 - Coherent diffraction
 - Polychromatic μ-beam

- New fields
 - Position of a quantum dot in a wire by coh. ciff.
 - Devices in complex buried environment
 - In-situ experiments (growth, working devices…)
 - Use (non coherent) nanobeams (ERSF upgrade)

- Many systems to study
 - Photonics, photovoltaics & electronics
 - + spintonics, metals…

Two examples…

CL emission spectra of a single GaN wire with Si:n-doped and un-intentionally doped segments.

Fluorescence, peak broadening…

Core-shell InGaN/GaN quantum wells. Light emission devices (LEDs)

Fluorescence: In- composition fluctuation μ-diffraction: defects, local strain…
Many thanks to:

- V. Favre-Nicolin, F. Rieutord, J.-S. Micha, N. Boudet, J-F. Berar and the French BM32 and BM 02 beamlines (CEA, CNRS)
- T. Metzger, D. Carbone, T. Schulli, A. Diaz and the ID01 beamline (ESRF)
- F. Andrieu, J.C. Barbé, O. Faynot and his group (Leti Minatec)
- L. Fröberg, M. Jappesen/Borg, T. Martensson, L.E. Wernersson, L. Samuelson (Lund University)
- E. Bakker, R. Algra (Philips, now at Eindhoven U.)
- I. Robinson, R. Harder (APS, now at Diamond synchrotron)
- M. Hocevar (Delft U.)
- Colleagues from CEA: Y.M. Niquet, D. Camacho, C. Durand, X. Chen, R. Köster, D. Salomon …

Have fun with X-rays
(NB/ to get this picture use E~70 keV and MOVPE GaN wires)

joel.eymery@cea.fr